extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1C23 = D4≀C2 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 8 | 4+ | (C2xD4).1C2^3 | 128,928 |
(C2×D4).2C23 = C42⋊4D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).2C2^3 | 128,929 |
(C2×D4).3C23 = C42.13D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).3C2^3 | 128,930 |
(C2×D4).4C23 = C42⋊5D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).4C2^3 | 128,931 |
(C2×D4).5C23 = C42⋊6D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).5C2^3 | 128,932 |
(C2×D4).6C23 = C42.14D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).6C2^3 | 128,933 |
(C2×D4).7C23 = D8⋊11D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).7C2^3 | 128,2020 |
(C2×D4).8C23 = D8.13D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).8C2^3 | 128,2021 |
(C2×D4).9C23 = D8○SD16 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).9C2^3 | 128,2022 |
(C2×D4).10C23 = D8⋊6D4 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).10C2^3 | 128,2023 |
(C2×D4).11C23 = D8○D8 | φ: C23/C1 → C23 ⊆ Out C2×D4 | 16 | 4+ | (C2xD4).11C2^3 | 128,2024 |
(C2×D4).12C23 = C2×C2≀C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).12C2^3 | 128,850 |
(C2×D4).13C23 = C2×C23.D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).13C2^3 | 128,851 |
(C2×D4).14C23 = C4○C2≀C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).14C2^3 | 128,852 |
(C2×D4).15C23 = C24.36D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).15C2^3 | 128,853 |
(C2×D4).16C23 = C2≀C4⋊C2 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).16C2^3 | 128,854 |
(C2×D4).17C23 = C23.(C2×D4) | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).17C2^3 | 128,855 |
(C2×D4).18C23 = C2×C42⋊C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).18C2^3 | 128,856 |
(C2×D4).19C23 = C2×C42⋊3C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).19C2^3 | 128,857 |
(C2×D4).20C23 = C4⋊Q8⋊29C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).20C2^3 | 128,858 |
(C2×D4).21C23 = C24.39D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).21C2^3 | 128,859 |
(C2×D4).22C23 = C4.4D4⋊C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).22C2^3 | 128,860 |
(C2×D4).23C23 = C4⋊Q8⋊C4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).23C2^3 | 128,861 |
(C2×D4).24C23 = C2×Q8⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).24C2^3 | 128,1730 |
(C2×D4).25C23 = C2×D4⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).25C2^3 | 128,1732 |
(C2×D4).26C23 = C24.178D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).26C2^3 | 128,1736 |
(C2×D4).27C23 = C24.104D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).27C2^3 | 128,1737 |
(C2×D4).28C23 = C24.105D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).28C2^3 | 128,1738 |
(C2×D4).29C23 = C4○D4⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).29C2^3 | 128,1740 |
(C2×D4).30C23 = (C2×Q8)⋊16D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).30C2^3 | 128,1742 |
(C2×D4).31C23 = (C2×D4)⋊21D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).31C2^3 | 128,1744 |
(C2×D4).32C23 = (C2×Q8)⋊17D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).32C2^3 | 128,1745 |
(C2×D4).33C23 = C2×D4.9D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).33C2^3 | 128,1747 |
(C2×D4).34C23 = C2×D4.8D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).34C2^3 | 128,1748 |
(C2×D4).35C23 = C42.313C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).35C2^3 | 128,1750 |
(C2×D4).36C23 = M4(2).C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).36C2^3 | 128,1752 |
(C2×D4).37C23 = C42.12C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).37C2^3 | 128,1753 |
(C2×D4).38C23 = C42.13C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).38C2^3 | 128,1754 |
(C2×D4).39C23 = C2×C2≀C22 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).39C2^3 | 128,1755 |
(C2×D4).40C23 = C2×C23.7D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).40C2^3 | 128,1756 |
(C2×D4).41C23 = C23.7C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).41C2^3 | 128,1757 |
(C2×D4).42C23 = C24⋊C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).42C2^3 | 128,1758 |
(C2×D4).43C23 = C23.9C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).43C2^3 | 128,1759 |
(C2×D4).44C23 = C23.10C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).44C2^3 | 128,1760 |
(C2×D4).45C23 = C2×C4⋊D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).45C2^3 | 128,1761 |
(C2×D4).46C23 = C2×C4⋊SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).46C2^3 | 128,1764 |
(C2×D4).47C23 = C2×Q8.D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).47C2^3 | 128,1766 |
(C2×D4).48C23 = C42.443D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).48C2^3 | 128,1767 |
(C2×D4).49C23 = C42.211D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).49C2^3 | 128,1768 |
(C2×D4).50C23 = C42.212D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).50C2^3 | 128,1769 |
(C2×D4).51C23 = C42.444D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).51C2^3 | 128,1770 |
(C2×D4).52C23 = C42.14C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).52C2^3 | 128,1773 |
(C2×D4).53C23 = C42.16C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).53C2^3 | 128,1775 |
(C2×D4).54C23 = C42.17C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).54C2^3 | 128,1776 |
(C2×D4).55C23 = C42.18C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).55C2^3 | 128,1777 |
(C2×D4).56C23 = C2×C8⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).56C2^3 | 128,1779 |
(C2×D4).57C23 = C2×C8⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).57C2^3 | 128,1780 |
(C2×D4).58C23 = C24.144D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).58C2^3 | 128,1782 |
(C2×D4).59C23 = C2×C8⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).59C2^3 | 128,1783 |
(C2×D4).60C23 = C2×C8⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).60C2^3 | 128,1784 |
(C2×D4).61C23 = C24.110D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).61C2^3 | 128,1786 |
(C2×D4).62C23 = M4(2)⋊14D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).62C2^3 | 128,1787 |
(C2×D4).63C23 = M4(2)⋊15D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).63C2^3 | 128,1788 |
(C2×D4).64C23 = (C2×C8)⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).64C2^3 | 128,1789 |
(C2×D4).65C23 = (C2×C8)⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).65C2^3 | 128,1790 |
(C2×D4).66C23 = (C2×C8)⋊13D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).66C2^3 | 128,1792 |
(C2×D4).67C23 = (C2×C8)⋊14D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).67C2^3 | 128,1793 |
(C2×D4).68C23 = M4(2)⋊16D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).68C2^3 | 128,1794 |
(C2×D4).69C23 = M4(2)⋊17D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).69C2^3 | 128,1795 |
(C2×D4).70C23 = C2×D4.3D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).70C2^3 | 128,1796 |
(C2×D4).71C23 = C2×D4.4D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).71C2^3 | 128,1797 |
(C2×D4).72C23 = M4(2).10C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).72C2^3 | 128,1799 |
(C2×D4).73C23 = M4(2).37D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).73C2^3 | 128,1800 |
(C2×D4).74C23 = M4(2).38D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).74C2^3 | 128,1801 |
(C2×D4).75C23 = C2×C22.D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).75C2^3 | 128,1817 |
(C2×D4).76C23 = C2×C23.19D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).76C2^3 | 128,1819 |
(C2×D4).77C23 = C2×C23.46D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).77C2^3 | 128,1821 |
(C2×D4).78C23 = C24.115D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).78C2^3 | 128,1823 |
(C2×D4).79C23 = C24.183D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).79C2^3 | 128,1824 |
(C2×D4).80C23 = C24.116D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).80C2^3 | 128,1825 |
(C2×D4).81C23 = C24.117D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).81C2^3 | 128,1826 |
(C2×D4).82C23 = (C2×D4).301D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).82C2^3 | 128,1828 |
(C2×D4).83C23 = (C2×D4).303D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).83C2^3 | 128,1830 |
(C2×D4).84C23 = (C2×D4).304D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).84C2^3 | 128,1831 |
(C2×D4).85C23 = C42.384D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).85C2^3 | 128,1834 |
(C2×D4).86C23 = C42.223D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).86C2^3 | 128,1835 |
(C2×D4).87C23 = C42.225D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).87C2^3 | 128,1837 |
(C2×D4).88C23 = C42.450D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).88C2^3 | 128,1838 |
(C2×D4).89C23 = C42.226D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).89C2^3 | 128,1840 |
(C2×D4).90C23 = C42.227D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).90C2^3 | 128,1841 |
(C2×D4).91C23 = C42.230D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).91C2^3 | 128,1844 |
(C2×D4).92C23 = C42.233D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).92C2^3 | 128,1847 |
(C2×D4).93C23 = C42.235D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).93C2^3 | 128,1849 |
(C2×D4).94C23 = C42.355C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).94C2^3 | 128,1853 |
(C2×D4).95C23 = C42.360C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).95C2^3 | 128,1858 |
(C2×D4).96C23 = C2×C4.4D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).96C2^3 | 128,1860 |
(C2×D4).97C23 = C2×C42.78C22 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).97C2^3 | 128,1862 |
(C2×D4).98C23 = C42.355D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).98C2^3 | 128,1863 |
(C2×D4).99C23 = C2×C42.28C22 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).99C2^3 | 128,1864 |
(C2×D4).100C23 = C2×C42.29C22 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).100C2^3 | 128,1865 |
(C2×D4).101C23 = C42.239D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).101C2^3 | 128,1867 |
(C2×D4).102C23 = C42.366C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).102C2^3 | 128,1868 |
(C2×D4).103C23 = C42.367C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).103C2^3 | 128,1869 |
(C2×D4).104C23 = C42.240D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).104C2^3 | 128,1870 |
(C2×D4).105C23 = C42.242D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).105C2^3 | 128,1872 |
(C2×D4).106C23 = C42.243D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).106C2^3 | 128,1873 |
(C2×D4).107C23 = C42.244D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).107C2^3 | 128,1874 |
(C2×D4).108C23 = C2×C8⋊5D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).108C2^3 | 128,1875 |
(C2×D4).109C23 = C2×C8⋊4D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).109C2^3 | 128,1876 |
(C2×D4).110C23 = C2×C8.12D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).110C2^3 | 128,1878 |
(C2×D4).111C23 = C42.360D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).111C2^3 | 128,1879 |
(C2×D4).112C23 = C2×C8⋊3D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).112C2^3 | 128,1880 |
(C2×D4).113C23 = C2×C8.2D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).113C2^3 | 128,1881 |
(C2×D4).114C23 = C42.247D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).114C2^3 | 128,1882 |
(C2×D4).115C23 = M4(2)⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).115C2^3 | 128,1883 |
(C2×D4).116C23 = M4(2)⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).116C2^3 | 128,1884 |
(C2×D4).117C23 = M4(2)⋊9D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).117C2^3 | 128,1885 |
(C2×D4).118C23 = M4(2)⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).118C2^3 | 128,1886 |
(C2×D4).119C23 = M4(2)⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).119C2^3 | 128,1887 |
(C2×D4).120C23 = M4(2).20D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).120C2^3 | 128,1888 |
(C2×D4).121C23 = C42.365D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).121C2^3 | 128,1899 |
(C2×D4).122C23 = C42.308D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).122C2^3 | 128,1900 |
(C2×D4).123C23 = C42.366D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).123C2^3 | 128,1901 |
(C2×D4).124C23 = C42.255D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).124C2^3 | 128,1903 |
(C2×D4).125C23 = C42.256D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).125C2^3 | 128,1904 |
(C2×D4).126C23 = C42.385C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).126C2^3 | 128,1905 |
(C2×D4).127C23 = C42.386C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).127C2^3 | 128,1906 |
(C2×D4).128C23 = C42.387C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).128C2^3 | 128,1907 |
(C2×D4).129C23 = C42.388C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).129C2^3 | 128,1908 |
(C2×D4).130C23 = C42.390C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).130C2^3 | 128,1910 |
(C2×D4).131C23 = C42.391C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).131C2^3 | 128,1911 |
(C2×D4).132C23 = C42.257D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).132C2^3 | 128,1912 |
(C2×D4).133C23 = C42.258D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).133C2^3 | 128,1913 |
(C2×D4).134C23 = C42.259D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).134C2^3 | 128,1914 |
(C2×D4).135C23 = C42.260D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).135C2^3 | 128,1915 |
(C2×D4).136C23 = C42.261D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).136C2^3 | 128,1916 |
(C2×D4).137C23 = C23⋊3D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).137C2^3 | 128,1918 |
(C2×D4).138C23 = C23⋊4SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).138C2^3 | 128,1919 |
(C2×D4).139C23 = C24.121D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).139C2^3 | 128,1920 |
(C2×D4).140C23 = C24.123D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).140C2^3 | 128,1922 |
(C2×D4).141C23 = C24.124D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).141C2^3 | 128,1923 |
(C2×D4).142C23 = C24.125D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).142C2^3 | 128,1924 |
(C2×D4).143C23 = C24.126D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).143C2^3 | 128,1925 |
(C2×D4).144C23 = C24.127D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).144C2^3 | 128,1926 |
(C2×D4).145C23 = C24.129D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).145C2^3 | 128,1928 |
(C2×D4).146C23 = C24.130D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).146C2^3 | 128,1929 |
(C2×D4).147C23 = C4.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).147C2^3 | 128,1930 |
(C2×D4).148C23 = C4.142+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).148C2^3 | 128,1931 |
(C2×D4).149C23 = C4.152+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).149C2^3 | 128,1932 |
(C2×D4).150C23 = C4.162+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).150C2^3 | 128,1933 |
(C2×D4).151C23 = C4.182+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).151C2^3 | 128,1935 |
(C2×D4).152C23 = C4.192+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).152C2^3 | 128,1936 |
(C2×D4).153C23 = C42.263D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).153C2^3 | 128,1937 |
(C2×D4).154C23 = C42.264D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).154C2^3 | 128,1938 |
(C2×D4).155C23 = C42.265D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).155C2^3 | 128,1939 |
(C2×D4).156C23 = C42.266D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).156C2^3 | 128,1940 |
(C2×D4).157C23 = C42.268D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).157C2^3 | 128,1942 |
(C2×D4).158C23 = C42.269D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).158C2^3 | 128,1943 |
(C2×D4).159C23 = C42.270D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).159C2^3 | 128,1944 |
(C2×D4).160C23 = C42.271D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).160C2^3 | 128,1945 |
(C2×D4).161C23 = C42.272D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).161C2^3 | 128,1946 |
(C2×D4).162C23 = C42.273D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).162C2^3 | 128,1947 |
(C2×D4).163C23 = C42.274D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).163C2^3 | 128,1948 |
(C2×D4).164C23 = C42.275D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).164C2^3 | 128,1949 |
(C2×D4).165C23 = C42.276D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).165C2^3 | 128,1950 |
(C2×D4).166C23 = C42.277D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).166C2^3 | 128,1951 |
(C2×D4).167C23 = C42.406C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).167C2^3 | 128,1952 |
(C2×D4).168C23 = C42.407C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).168C2^3 | 128,1953 |
(C2×D4).169C23 = C42.408C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).169C2^3 | 128,1954 |
(C2×D4).170C23 = C42.409C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).170C2^3 | 128,1955 |
(C2×D4).171C23 = C42.410C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).171C2^3 | 128,1956 |
(C2×D4).172C23 = C42.411C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).172C2^3 | 128,1957 |
(C2×D4).173C23 = C42.278D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).173C2^3 | 128,1958 |
(C2×D4).174C23 = C42.279D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).174C2^3 | 128,1959 |
(C2×D4).175C23 = C42.280D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).175C2^3 | 128,1960 |
(C2×D4).176C23 = C42.284D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).176C2^3 | 128,1964 |
(C2×D4).177C23 = C42.285D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).177C2^3 | 128,1965 |
(C2×D4).178C23 = C42.286D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).178C2^3 | 128,1966 |
(C2×D4).179C23 = C42.287D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).179C2^3 | 128,1967 |
(C2×D4).180C23 = C42.290D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).180C2^3 | 128,1970 |
(C2×D4).181C23 = C42.291D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).181C2^3 | 128,1971 |
(C2×D4).182C23 = C42.292D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).182C2^3 | 128,1972 |
(C2×D4).183C23 = C42.423C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).183C2^3 | 128,1973 |
(C2×D4).184C23 = C42.425C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).184C2^3 | 128,1975 |
(C2×D4).185C23 = C42.426C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).185C2^3 | 128,1976 |
(C2×D4).186C23 = C42.293D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).186C2^3 | 128,1977 |
(C2×D4).187C23 = C42.294D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).187C2^3 | 128,1978 |
(C2×D4).188C23 = C42.295D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).188C2^3 | 128,1979 |
(C2×D4).189C23 = C42.296D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).189C2^3 | 128,1980 |
(C2×D4).190C23 = C42.298D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).190C2^3 | 128,1982 |
(C2×D4).191C23 = C42.299D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).191C2^3 | 128,1983 |
(C2×D4).192C23 = C42.300D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).192C2^3 | 128,1984 |
(C2×D4).193C23 = C42.301D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).193C2^3 | 128,1985 |
(C2×D4).194C23 = C42.302D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).194C2^3 | 128,1986 |
(C2×D4).195C23 = C42.304D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).195C2^3 | 128,1988 |
(C2×D4).196C23 = C4.2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).196C2^3 | 128,1989 |
(C2×D4).197C23 = C42.25C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).197C2^3 | 128,1990 |
(C2×D4).198C23 = C42.26C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).198C2^3 | 128,1991 |
(C2×D4).199C23 = C42.27C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).199C2^3 | 128,1992 |
(C2×D4).200C23 = C42.29C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).200C2^3 | 128,1994 |
(C2×D4).201C23 = C42.30C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).201C2^3 | 128,1995 |
(C2×D4).202C23 = D8⋊9D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).202C2^3 | 128,1996 |
(C2×D4).203C23 = SD16⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).203C2^3 | 128,1997 |
(C2×D4).204C23 = SD16⋊6D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).204C2^3 | 128,1998 |
(C2×D4).205C23 = D8⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).205C2^3 | 128,1999 |
(C2×D4).206C23 = SD16⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).206C2^3 | 128,2000 |
(C2×D4).207C23 = SD16⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).207C2^3 | 128,2001 |
(C2×D4).208C23 = Q16⋊9D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).208C2^3 | 128,2002 |
(C2×D4).209C23 = Q16⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).209C2^3 | 128,2003 |
(C2×D4).210C23 = D8⋊4D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).210C2^3 | 128,2004 |
(C2×D4).211C23 = SD16⋊1D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).211C2^3 | 128,2006 |
(C2×D4).212C23 = SD16⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).212C2^3 | 128,2007 |
(C2×D4).213C23 = Q16⋊4D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).213C2^3 | 128,2009 |
(C2×D4).214C23 = Q16⋊5D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).214C2^3 | 128,2010 |
(C2×D4).215C23 = SD16⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).215C2^3 | 128,2014 |
(C2×D4).216C23 = SD16⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).216C2^3 | 128,2016 |
(C2×D4).217C23 = Q16⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).217C2^3 | 128,2017 |
(C2×D4).218C23 = Q16⋊13D4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).218C2^3 | 128,2019 |
(C2×D4).219C23 = D4⋊4D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).219C2^3 | 128,2026 |
(C2×D4).220C23 = D4⋊7SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).220C2^3 | 128,2027 |
(C2×D4).221C23 = C42.462C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).221C2^3 | 128,2029 |
(C2×D4).222C23 = D4⋊8SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).222C2^3 | 128,2030 |
(C2×D4).223C23 = C42.465C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).223C2^3 | 128,2032 |
(C2×D4).224C23 = C42.466C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).224C2^3 | 128,2033 |
(C2×D4).225C23 = C42.468C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).225C2^3 | 128,2035 |
(C2×D4).226C23 = C42.469C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).226C2^3 | 128,2036 |
(C2×D4).227C23 = C42.470C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).227C2^3 | 128,2037 |
(C2×D4).228C23 = C42.41C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).228C2^3 | 128,2038 |
(C2×D4).229C23 = C42.42C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).229C2^3 | 128,2039 |
(C2×D4).230C23 = C42.43C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).230C2^3 | 128,2040 |
(C2×D4).231C23 = C42.44C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).231C2^3 | 128,2041 |
(C2×D4).232C23 = C42.46C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).232C2^3 | 128,2043 |
(C2×D4).233C23 = C42.48C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).233C2^3 | 128,2045 |
(C2×D4).234C23 = C42.51C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).234C2^3 | 128,2048 |
(C2×D4).235C23 = C42.52C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).235C2^3 | 128,2049 |
(C2×D4).236C23 = C42.53C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).236C2^3 | 128,2050 |
(C2×D4).237C23 = C42.54C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).237C2^3 | 128,2051 |
(C2×D4).238C23 = C42.55C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).238C2^3 | 128,2052 |
(C2×D4).239C23 = C42.56C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).239C2^3 | 128,2053 |
(C2×D4).240C23 = C42.471C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).240C2^3 | 128,2054 |
(C2×D4).241C23 = C42.474C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).241C2^3 | 128,2057 |
(C2×D4).242C23 = C42.475C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).242C2^3 | 128,2058 |
(C2×D4).243C23 = C42.476C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).243C2^3 | 128,2059 |
(C2×D4).244C23 = C42.478C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).244C2^3 | 128,2061 |
(C2×D4).245C23 = C42.479C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).245C2^3 | 128,2062 |
(C2×D4).246C23 = C42.481C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).246C2^3 | 128,2064 |
(C2×D4).247C23 = C42.482C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).247C2^3 | 128,2065 |
(C2×D4).248C23 = D4⋊5D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).248C2^3 | 128,2066 |
(C2×D4).249C23 = D4⋊9SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).249C2^3 | 128,2067 |
(C2×D4).250C23 = C42.486C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).250C2^3 | 128,2069 |
(C2×D4).251C23 = C42.488C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).251C2^3 | 128,2071 |
(C2×D4).252C23 = C42.489C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).252C2^3 | 128,2072 |
(C2×D4).253C23 = C42.490C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).253C2^3 | 128,2073 |
(C2×D4).254C23 = C42.57C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).254C2^3 | 128,2075 |
(C2×D4).255C23 = C42.59C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).255C2^3 | 128,2077 |
(C2×D4).256C23 = C42.60C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).256C2^3 | 128,2078 |
(C2×D4).257C23 = C42.61C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).257C2^3 | 128,2079 |
(C2×D4).258C23 = C42.62C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).258C2^3 | 128,2080 |
(C2×D4).259C23 = C42.64C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).259C2^3 | 128,2082 |
(C2×D4).260C23 = C42.492C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).260C2^3 | 128,2083 |
(C2×D4).261C23 = C42.494C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).261C2^3 | 128,2085 |
(C2×D4).262C23 = C42.495C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).262C2^3 | 128,2086 |
(C2×D4).263C23 = C42.496C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).263C2^3 | 128,2087 |
(C2×D4).264C23 = C42.498C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).264C2^3 | 128,2089 |
(C2×D4).265C23 = Q8⋊4D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).265C2^3 | 128,2090 |
(C2×D4).266C23 = C42.502C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).266C2^3 | 128,2093 |
(C2×D4).267C23 = Q8⋊8SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).267C2^3 | 128,2094 |
(C2×D4).268C23 = C42.505C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).268C2^3 | 128,2096 |
(C2×D4).269C23 = C42.506C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).269C2^3 | 128,2097 |
(C2×D4).270C23 = C42.507C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).270C2^3 | 128,2098 |
(C2×D4).271C23 = C42.509C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).271C2^3 | 128,2100 |
(C2×D4).272C23 = C42.510C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).272C2^3 | 128,2101 |
(C2×D4).273C23 = C42.511C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).273C2^3 | 128,2102 |
(C2×D4).274C23 = C42.512C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).274C2^3 | 128,2103 |
(C2×D4).275C23 = C42.514C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).275C2^3 | 128,2105 |
(C2×D4).276C23 = C42.516C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).276C2^3 | 128,2107 |
(C2×D4).277C23 = C42.518C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).277C2^3 | 128,2109 |
(C2×D4).278C23 = Q8⋊5D8 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).278C2^3 | 128,2123 |
(C2×D4).279C23 = Q8⋊9SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).279C2^3 | 128,2124 |
(C2×D4).280C23 = C42.527C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).280C2^3 | 128,2125 |
(C2×D4).281C23 = C42.528C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).281C2^3 | 128,2126 |
(C2×D4).282C23 = C42.530C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).282C2^3 | 128,2128 |
(C2×D4).283C23 = C42.72C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).283C2^3 | 128,2129 |
(C2×D4).284C23 = C42.73C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).284C2^3 | 128,2130 |
(C2×D4).285C23 = C42.74C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).285C2^3 | 128,2131 |
(C2×D4).286C23 = C42.75C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).286C2^3 | 128,2132 |
(C2×D4).287C23 = C42.531C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).287C2^3 | 128,2133 |
(C2×D4).288C23 = C42.532C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).288C2^3 | 128,2134 |
(C2×D4).289C23 = C42.533C23 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).289C2^3 | 128,2135 |
(C2×D4).290C23 = C2×C22.31C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).290C2^3 | 128,2180 |
(C2×D4).291C23 = C22.38C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).291C2^3 | 128,2181 |
(C2×D4).292C23 = C2×C22.36C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).292C2^3 | 128,2186 |
(C2×D4).293C23 = C22.44C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).293C2^3 | 128,2187 |
(C2×D4).294C23 = C22.48C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).294C2^3 | 128,2191 |
(C2×D4).295C23 = C22.49C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).295C2^3 | 128,2192 |
(C2×D4).296C23 = C22.50C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).296C2^3 | 128,2193 |
(C2×D4).297C23 = C22.70C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).297C2^3 | 128,2213 |
(C2×D4).298C23 = C22.76C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).298C2^3 | 128,2219 |
(C2×D4).299C23 = C22.78C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).299C2^3 | 128,2221 |
(C2×D4).300C23 = C22.82C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).300C2^3 | 128,2225 |
(C2×D4).301C23 = C22.83C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).301C2^3 | 128,2226 |
(C2×D4).302C23 = C4⋊2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).302C2^3 | 128,2229 |
(C2×D4).303C23 = C22.94C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).303C2^3 | 128,2237 |
(C2×D4).304C23 = C22.95C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).304C2^3 | 128,2238 |
(C2×D4).305C23 = C22.97C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).305C2^3 | 128,2240 |
(C2×D4).306C23 = C22.99C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).306C2^3 | 128,2242 |
(C2×D4).307C23 = C22.100C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).307C2^3 | 128,2243 |
(C2×D4).308C23 = C22.101C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).308C2^3 | 128,2244 |
(C2×D4).309C23 = C2×C24⋊C22 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).309C2^3 | 128,2258 |
(C2×D4).310C23 = C2×C22.56C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).310C2^3 | 128,2259 |
(C2×D4).311C23 = C2×C22.57C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).311C2^3 | 128,2260 |
(C2×D4).312C23 = C22.118C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).312C2^3 | 128,2261 |
(C2×D4).313C23 = C22.120C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).313C2^3 | 128,2263 |
(C2×D4).314C23 = C22.122C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).314C2^3 | 128,2265 |
(C2×D4).315C23 = C22.123C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).315C2^3 | 128,2266 |
(C2×D4).316C23 = C22.124C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).316C2^3 | 128,2267 |
(C2×D4).317C23 = C22.125C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).317C2^3 | 128,2268 |
(C2×D4).318C23 = C22.126C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).318C2^3 | 128,2269 |
(C2×D4).319C23 = C22.127C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).319C2^3 | 128,2270 |
(C2×D4).320C23 = C22.128C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).320C2^3 | 128,2271 |
(C2×D4).321C23 = C22.129C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).321C2^3 | 128,2272 |
(C2×D4).322C23 = C22.130C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).322C2^3 | 128,2273 |
(C2×D4).323C23 = C22.131C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).323C2^3 | 128,2274 |
(C2×D4).324C23 = C22.132C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).324C2^3 | 128,2275 |
(C2×D4).325C23 = C22.133C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).325C2^3 | 128,2276 |
(C2×D4).326C23 = C22.134C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).326C2^3 | 128,2277 |
(C2×D4).327C23 = C22.135C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).327C2^3 | 128,2278 |
(C2×D4).328C23 = C22.136C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).328C2^3 | 128,2279 |
(C2×D4).329C23 = C22.137C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).329C2^3 | 128,2280 |
(C2×D4).330C23 = C22.138C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).330C2^3 | 128,2281 |
(C2×D4).331C23 = C22.139C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).331C2^3 | 128,2282 |
(C2×D4).332C23 = C22.140C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).332C2^3 | 128,2283 |
(C2×D4).333C23 = C22.142C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).333C2^3 | 128,2285 |
(C2×D4).334C23 = C22.144C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).334C2^3 | 128,2287 |
(C2×D4).335C23 = C22.146C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).335C2^3 | 128,2289 |
(C2×D4).336C23 = C22.147C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).336C2^3 | 128,2290 |
(C2×D4).337C23 = C22.148C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).337C2^3 | 128,2291 |
(C2×D4).338C23 = C22.149C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).338C2^3 | 128,2292 |
(C2×D4).339C23 = C22.150C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).339C2^3 | 128,2293 |
(C2×D4).340C23 = C22.151C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).340C2^3 | 128,2294 |
(C2×D4).341C23 = C22.153C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).341C2^3 | 128,2296 |
(C2×D4).342C23 = C22.154C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).342C2^3 | 128,2297 |
(C2×D4).343C23 = C22.155C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).343C2^3 | 128,2298 |
(C2×D4).344C23 = C22.156C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).344C2^3 | 128,2299 |
(C2×D4).345C23 = C22.157C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).345C2^3 | 128,2300 |
(C2×D4).346C23 = C2×D4○SD16 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).346C2^3 | 128,2314 |
(C2×D4).347C23 = C8.C24 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).347C2^3 | 128,2316 |
(C2×D4).348C23 = C4.C25 | φ: C23/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).348C2^3 | 128,2318 |
(C2×D4).349C23 = C22×C23⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).349C2^3 | 128,1613 |
(C2×D4).350C23 = C2×C23.C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).350C2^3 | 128,1614 |
(C2×D4).351C23 = C23.C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).351C2^3 | 128,1615 |
(C2×D4).352C23 = C23.4C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).352C2^3 | 128,1616 |
(C2×D4).353C23 = C22×C4.D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).353C2^3 | 128,1617 |
(C2×D4).354C23 = C2×M4(2).8C22 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).354C2^3 | 128,1619 |
(C2×D4).355C23 = M4(2).24C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).355C2^3 | 128,1620 |
(C2×D4).356C23 = M4(2).25C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).356C2^3 | 128,1621 |
(C2×D4).357C23 = C22×D4⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).357C2^3 | 128,1622 |
(C2×D4).358C23 = C2×C23.24D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).358C2^3 | 128,1624 |
(C2×D4).359C23 = C2×C23.37D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).359C2^3 | 128,1625 |
(C2×D4).360C23 = C2×C23.36D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).360C2^3 | 128,1627 |
(C2×D4).361C23 = C24.98D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).361C2^3 | 128,1628 |
(C2×D4).362C23 = 2+ 1+4⋊5C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).362C2^3 | 128,1629 |
(C2×D4).363C23 = 2- 1+4⋊4C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).363C2^3 | 128,1630 |
(C2×D4).364C23 = C2×C4×D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).364C2^3 | 128,1668 |
(C2×D4).365C23 = C2×C4×SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).365C2^3 | 128,1669 |
(C2×D4).366C23 = C4×C4○D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).366C2^3 | 128,1671 |
(C2×D4).367C23 = C2×SD16⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).367C2^3 | 128,1672 |
(C2×D4).368C23 = C2×D8⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).368C2^3 | 128,1674 |
(C2×D4).369C23 = C42.383D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).369C2^3 | 128,1675 |
(C2×D4).370C23 = C4×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).370C2^3 | 128,1676 |
(C2×D4).371C23 = C4×C8.C22 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).371C2^3 | 128,1677 |
(C2×D4).372C23 = C42.275C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).372C2^3 | 128,1678 |
(C2×D4).373C23 = C42.276C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).373C2^3 | 128,1679 |
(C2×D4).374C23 = C42.277C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).374C2^3 | 128,1680 |
(C2×D4).375C23 = C42.278C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).375C2^3 | 128,1681 |
(C2×D4).376C23 = C42.280C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).376C2^3 | 128,1683 |
(C2×D4).377C23 = C42.281C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).377C2^3 | 128,1684 |
(C2×D4).378C23 = C2×C22⋊SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).378C2^3 | 128,1729 |
(C2×D4).379C23 = C2×D4.7D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).379C2^3 | 128,1733 |
(C2×D4).380C23 = C24.103D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).380C2^3 | 128,1734 |
(C2×D4).381C23 = C24.106D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).381C2^3 | 128,1739 |
(C2×D4).382C23 = D4.(C2×D4) | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).382C2^3 | 128,1741 |
(C2×D4).383C23 = Q8.(C2×D4) | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).383C2^3 | 128,1743 |
(C2×D4).384C23 = C2×D4.D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).384C2^3 | 128,1762 |
(C2×D4).385C23 = C2×D4.2D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).385C2^3 | 128,1763 |
(C2×D4).386C23 = C42.445D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).386C2^3 | 128,1771 |
(C2×D4).387C23 = C42.446D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).387C2^3 | 128,1772 |
(C2×D4).388C23 = C42.15C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).388C2^3 | 128,1774 |
(C2×D4).389C23 = C42.19C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).389C2^3 | 128,1778 |
(C2×D4).390C23 = C2×D4⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).390C2^3 | 128,1802 |
(C2×D4).391C23 = C2×D4⋊2Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).391C2^3 | 128,1803 |
(C2×D4).392C23 = C2×D4.Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).392C2^3 | 128,1804 |
(C2×D4).393C23 = C42.447D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).393C2^3 | 128,1808 |
(C2×D4).394C23 = C42.219D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).394C2^3 | 128,1809 |
(C2×D4).395C23 = C42.448D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).395C2^3 | 128,1811 |
(C2×D4).396C23 = C42.449D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).396C2^3 | 128,1812 |
(C2×D4).397C23 = C42.20C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).397C2^3 | 128,1813 |
(C2×D4).398C23 = C42.22C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).398C2^3 | 128,1815 |
(C2×D4).399C23 = C42.23C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).399C2^3 | 128,1816 |
(C2×D4).400C23 = C42.221D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).400C2^3 | 128,1832 |
(C2×D4).401C23 = C42.222D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).401C2^3 | 128,1833 |
(C2×D4).402C23 = C42.451D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).402C2^3 | 128,1839 |
(C2×D4).403C23 = C42.228D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).403C2^3 | 128,1842 |
(C2×D4).404C23 = C42.229D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).404C2^3 | 128,1843 |
(C2×D4).405C23 = C42.232D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).405C2^3 | 128,1846 |
(C2×D4).406C23 = C42.234D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).406C2^3 | 128,1848 |
(C2×D4).407C23 = C42.352C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).407C2^3 | 128,1850 |
(C2×D4).408C23 = C42.353C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).408C2^3 | 128,1851 |
(C2×D4).409C23 = C42.354C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).409C2^3 | 128,1852 |
(C2×D4).410C23 = C42.356C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).410C2^3 | 128,1854 |
(C2×D4).411C23 = C42.357C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).411C2^3 | 128,1855 |
(C2×D4).412C23 = C42.358C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).412C2^3 | 128,1856 |
(C2×D4).413C23 = C42.359C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).413C2^3 | 128,1857 |
(C2×D4).414C23 = D8⋊5D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).414C2^3 | 128,2005 |
(C2×D4).415C23 = SD16⋊3D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).415C2^3 | 128,2008 |
(C2×D4).416C23 = D4×D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).416C2^3 | 128,2011 |
(C2×D4).417C23 = D8⋊12D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).417C2^3 | 128,2012 |
(C2×D4).418C23 = D4×SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).418C2^3 | 128,2013 |
(C2×D4).419C23 = D8⋊13D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).419C2^3 | 128,2015 |
(C2×D4).420C23 = C42.461C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).420C2^3 | 128,2028 |
(C2×D4).421C23 = C42.467C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).421C2^3 | 128,2034 |
(C2×D4).422C23 = C42.45C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).422C2^3 | 128,2042 |
(C2×D4).423C23 = C42.49C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).423C2^3 | 128,2046 |
(C2×D4).424C23 = C42.50C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).424C2^3 | 128,2047 |
(C2×D4).425C23 = C42.472C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).425C2^3 | 128,2055 |
(C2×D4).426C23 = C42.473C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).426C2^3 | 128,2056 |
(C2×D4).427C23 = C42.480C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).427C2^3 | 128,2063 |
(C2×D4).428C23 = Q8⋊7SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).428C2^3 | 128,2091 |
(C2×D4).429C23 = C42.501C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).429C2^3 | 128,2092 |
(C2×D4).430C23 = C42.508C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).430C2^3 | 128,2099 |
(C2×D4).431C23 = C42.513C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).431C2^3 | 128,2104 |
(C2×D4).432C23 = C42.517C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).432C2^3 | 128,2108 |
(C2×D4).433C23 = Q8×D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).433C2^3 | 128,2110 |
(C2×D4).434C23 = Q8×SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).434C2^3 | 128,2111 |
(C2×D4).435C23 = D8⋊6Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).435C2^3 | 128,2112 |
(C2×D4).436C23 = SD16⋊4Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).436C2^3 | 128,2113 |
(C2×D4).437C23 = D8⋊4Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).437C2^3 | 128,2116 |
(C2×D4).438C23 = SD16⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).438C2^3 | 128,2117 |
(C2×D4).439C23 = SD16⋊2Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).439C2^3 | 128,2118 |
(C2×D4).440C23 = SD16⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).440C2^3 | 128,2120 |
(C2×D4).441C23 = D8⋊5Q8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).441C2^3 | 128,2121 |
(C2×D4).442C23 = C22×C22.D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).442C2^3 | 128,2166 |
(C2×D4).443C23 = C22×C4.4D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).443C2^3 | 128,2168 |
(C2×D4).444C23 = C2×C23.36C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).444C2^3 | 128,2171 |
(C2×D4).445C23 = C2×C22.26C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).445C2^3 | 128,2174 |
(C2×D4).446C23 = C22.33C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).446C2^3 | 128,2176 |
(C2×D4).447C23 = C2×C23.38C23 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).447C2^3 | 128,2179 |
(C2×D4).448C23 = C2×C22.33C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).448C2^3 | 128,2183 |
(C2×D4).449C23 = C2×C22.34C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).449C2^3 | 128,2184 |
(C2×D4).450C23 = C2×D4⋊6D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).450C2^3 | 128,2196 |
(C2×D4).451C23 = C2×Q8⋊5D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).451C2^3 | 128,2197 |
(C2×D4).452C23 = C2×Q8⋊6D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).452C2^3 | 128,2199 |
(C2×D4).453C23 = D4×C4○D4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).453C2^3 | 128,2200 |
(C2×D4).454C23 = C2×C22.45C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).454C2^3 | 128,2201 |
(C2×D4).455C23 = C2×C22.46C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).455C2^3 | 128,2202 |
(C2×D4).456C23 = C2×C22.47C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).456C2^3 | 128,2203 |
(C2×D4).457C23 = C2×C22.49C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).457C2^3 | 128,2205 |
(C2×D4).458C23 = C2×C22.50C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).458C2^3 | 128,2206 |
(C2×D4).459C23 = C22.64C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).459C2^3 | 128,2207 |
(C2×D4).460C23 = C2×C22.53C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).460C2^3 | 128,2211 |
(C2×D4).461C23 = C22.69C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).461C2^3 | 128,2212 |
(C2×D4).462C23 = C22.72C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).462C2^3 | 128,2215 |
(C2×D4).463C23 = C22.74C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).463C2^3 | 128,2217 |
(C2×D4).464C23 = C22.75C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).464C2^3 | 128,2218 |
(C2×D4).465C23 = C22.77C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).465C2^3 | 128,2220 |
(C2×D4).466C23 = C22.80C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).466C2^3 | 128,2223 |
(C2×D4).467C23 = C22.81C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).467C2^3 | 128,2224 |
(C2×D4).468C23 = C22.84C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).468C2^3 | 128,2227 |
(C2×D4).469C23 = C4⋊2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).469C2^3 | 128,2228 |
(C2×D4).470C23 = C22.87C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).470C2^3 | 128,2230 |
(C2×D4).471C23 = C22.88C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).471C2^3 | 128,2231 |
(C2×D4).472C23 = C22.89C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).472C2^3 | 128,2232 |
(C2×D4).473C23 = C22.96C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).473C2^3 | 128,2239 |
(C2×D4).474C23 = C22.98C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).474C2^3 | 128,2241 |
(C2×D4).475C23 = C22.102C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).475C2^3 | 128,2245 |
(C2×D4).476C23 = C22.103C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).476C2^3 | 128,2246 |
(C2×D4).477C23 = C22.105C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).477C2^3 | 128,2248 |
(C2×D4).478C23 = C22.106C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).478C2^3 | 128,2249 |
(C2×D4).479C23 = C22.107C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).479C2^3 | 128,2250 |
(C2×D4).480C23 = C22.108C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).480C2^3 | 128,2251 |
(C2×D4).481C23 = C23.144C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).481C2^3 | 128,2252 |
(C2×D4).482C23 = C22.110C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).482C2^3 | 128,2253 |
(C2×D4).483C23 = C22.111C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).483C2^3 | 128,2254 |
(C2×D4).484C23 = C23.146C24 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).484C2^3 | 128,2255 |
(C2×D4).485C23 = C22.113C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).485C2^3 | 128,2256 |
(C2×D4).486C23 = C22.141C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).486C2^3 | 128,2284 |
(C2×D4).487C23 = C22.143C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).487C2^3 | 128,2286 |
(C2×D4).488C23 = C22.152C25 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).488C2^3 | 128,2295 |
(C2×D4).489C23 = C23×SD16 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).489C2^3 | 128,2307 |
(C2×D4).490C23 = C22×C4○D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).490C2^3 | 128,2309 |
(C2×D4).491C23 = C22×C8.C22 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).491C2^3 | 128,2311 |
(C2×D4).492C23 = C2×Q8○D8 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).492C2^3 | 128,2315 |
(C2×D4).493C23 = 2- 1+6 | φ: C23/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).493C2^3 | 128,2327 |
(C2×D4).494C23 = D4×C22×C4 | φ: trivial image | 64 | | (C2xD4).494C2^3 | 128,2154 |
(C2×D4).495C23 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2xD4).495C2^3 | 128,2156 |
(C2×D4).496C23 = C2×C22.11C24 | φ: trivial image | 32 | | (C2xD4).496C2^3 | 128,2157 |
(C2×D4).497C23 = C2×C23.33C23 | φ: trivial image | 64 | | (C2xD4).497C2^3 | 128,2159 |
(C2×D4).498C23 = C22.14C25 | φ: trivial image | 32 | | (C2xD4).498C2^3 | 128,2160 |
(C2×D4).499C23 = C4×2+ 1+4 | φ: trivial image | 32 | | (C2xD4).499C2^3 | 128,2161 |
(C2×D4).500C23 = C4×2- 1+4 | φ: trivial image | 64 | | (C2xD4).500C2^3 | 128,2162 |
(C2×D4).501C23 = C2×D4×Q8 | φ: trivial image | 64 | | (C2xD4).501C2^3 | 128,2198 |
(C2×D4).502C23 = C2×D4⋊3Q8 | φ: trivial image | 64 | | (C2xD4).502C2^3 | 128,2204 |
(C2×D4).503C23 = Q8×C4○D4 | φ: trivial image | 64 | | (C2xD4).503C2^3 | 128,2210 |
(C2×D4).504C23 = C22.71C25 | φ: trivial image | 64 | | (C2xD4).504C2^3 | 128,2214 |
(C2×D4).505C23 = C22.90C25 | φ: trivial image | 32 | | (C2xD4).505C2^3 | 128,2233 |
(C2×D4).506C23 = C22.92C25 | φ: trivial image | 64 | | (C2xD4).506C2^3 | 128,2235 |
(C2×D4).507C23 = C22.93C25 | φ: trivial image | 64 | | (C2xD4).507C2^3 | 128,2236 |
(C2×D4).508C23 = C22.104C25 | φ: trivial image | 64 | | (C2xD4).508C2^3 | 128,2247 |
(C2×D4).509C23 = C22×2- 1+4 | φ: trivial image | 64 | | (C2xD4).509C2^3 | 128,2324 |